LAMMPS KOKKOS Package:
The quest for performance

portable MD

Stan Moore

2019 LAMMPS Workshop
Albuquerque, NM

— @ENERGY NISA




* I Supercomputer Hardware Trends

Currently, halt of the top ten supercomputers use NVIDIA GPUs,

one more has Intel Xeon Phi (many-core) accelerators, according to

the June 2019 Top500 List (https://www.top500.01g)

In the future, other large supercomputers will have accelerators or
non-conventional hardware (NERSC Perlmutter—NVIDIA GPUs,
ANL Aurora—Intel Xe, ORNL Frontier—AMD GPUs)

Special code (beyond regular C++ and MPI in LAMMPS) is required

to run well on GPUs and many-core CPUs (e.g. CUDA, OpenMP;
likely true for future hardware as well

Hardware and corresponding programming languages are ever

changing, how to keep LAMMPS up to date?

Yt

http://www.nvidia.com/object/tesla-p | 00.html


https://www.top500.org/

> | Kokkos Performance Portability Library

Py
-

Kokkos 1s an abstraction layer between programmer and next-generation
platforms

Allows the same LAMMPS C++ code to run on multiple hardware (GPU,
Xeon Phi, etc.)

Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto
backend languages such as CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that can be optimized for
a specific hardware

Used on top of existing MPI parallelization (MPI + X)

Open-source, can be downloaded at https://github.com/kokkos/kokkos

In a nutshell, the goal of Kokkos is to future-proof LAMMPS to allow it

to run on future hardware without total re-write (i.e. change Kokkos
library for new hardware, not LAMMMPS)


https://github.com/kokkos/kokkos

I LAMMPS KOKKOS Package

Optional add-on package in LAMMPS
Developed by Stan Moore, Christian Trott, and others

Goal 1s that everything in LAMMPS (pair, fixes, computes, etc.) runs
on the GPU , with minimal data transfer from GPU to CPU if
possible

Ditferent than the GPU package, which only runs the pair-style and

a few other computations on the GPU




* I LAMMPS KOKKOS Package

8 atom Styles: angle, atomic, bond, charge, dpd, full, molecular, sphere (along with hybrid)

44 pair styles: buck/coul/cut, buck/coul/long, buck, coul/cut, coul/debye, coul/dsf,
coul/long, coul/wolf, dpd/fdt/energy, eam/alloy, eam/fs, eam, exp6/tx, gran/hooke/history,
hybrid/ovetlay, 1j/charmm/coul/charmm/implicit, 1j/charmm/coul/charmm,
lj/charmm/coul/long, lj/class2/coul/cut, lj/class2/coul/ 1onjg, lj/class2, 1j/cut/coul/cut,

1}/ cut/coul/debye, lﬁcut/ coul/dsf, lj/cut/coul/long, lj/cut, lj/expand,

lj/gromacs/ couly/ gromacs, lj/gromacs, 1j/sdk, morse, multi/lucy/rx, reaxc, snap, sw, table,
tab%e/ rx, tersoff, tersoff/mod, tersoff/zbl, vashishta, yukawa, zbl

22 fix styles: deform, dpd/energy, enforce2d, eos/table/rx, freeze, gravity, langevin,
momentum, neigh/history, nph, npt, nve, nve/sphere, nvt, 3property/ atom, qeq/reax,
reaxc/bonds, reaxc/species, rx, setforce, shardlow, wall/1j93, wall/reflect

1 compute style: temp

3 bond styles: class2, fene, harmonic

4 angle styles: charmm, class2, cosine, harmonic

3 dihedral styles: charmm, class2, opls

2 1mproper style: class2, harmonic

1 kspace style: pppm



‘! Compiling and Running KOKKOS Package

Kokkos library is already included with LAMMPS, no need to
download:
° In lammps/src directory, “make yes-kokkos”

° Build with /src/MAKE/OPTIONS/Makefile.kokkos_omp or
Makefile.kokkos_cuda_mpi

> Must use a c++11 compatible compiler (gcc 4.7.2 or higher, intel 14.0 or
higher, CUDA 7.5 or higher)

> Also CMake option, see docs

No changes to input script needed, just add a few command
line args:
° Run with 4 MPI tasks and 4 GPUs: “mpiexec -np 4 ./Imp_exe -in in.]j -k
on g 4 -sf kk”
° Run with 4 OpenMP threads: “./Imp_exe -in in]j -k on t 4 —sf kk”

See Kokkos docs:
https://lammps.sandia.gov/doc/Speed kokkos.html



https://lammps.sandia.gov/doc/Speed_kokkos.html

"I Recent Performance Work

2x improvement of small Lennard-Jones systems (~1000 atoms) on a
single V100 GPU

5x improvement of SNAP potential on V100 GPUs (regular CPU version
is also over 2x faster on CPUs than before)

2x improvement of PPPM long-range electrostatics on a V100 GPU (to
be released soon)

Improved OpenMP threading performance by adding data duplication
option (helped several pair styles, from L] to ReaxFF)



* I Performance comparison with GPU package

Double-precision only

Kokkos uses special fused MPI comm kernel when running on a single GPU
Performance penalty for moving atom data between GPU and CPU
Integrator 1s running serially on CPU

Lennard Jones, 1 V100 GPU + 1 MPI rank
404

-a-Kokkos

Better 354
-e—Kokkos, fix/nve and comm on CPU

—+—GPU Package

million atom-steps/s

1000 8000 64000 512000




> I Multiple MPI ranks per GPU

MUST use CUDA MPS with multiple MPI ranks per GPU to get good performance

Better

140

120

[EY
o
o

80

60

million atom-steps/s

40

20

Lennard-Jones, 1 V100 GPU, 32K atoms

—Kokkos, 1 MPI rank/GPU

-e—Kokkos, fix nve and comm on CPU

—+—GPU package

4
MPI ranks

16



o I Two MPI ranks

Higher overhead for Kokkos due to latency of launching multiple kernels to pack

communication buffers

Lennard Jones, 2 V100 GPUs, 1 MPI rank/GPU

604

504

N

o

D
T

Better

-a-Kokkos

-e—Kokkos, fix/nve and comm on CPU

—+—GPU package

304

204

million atom-steps/s

104

8000 64000 512000
atoms



" I Performance comparison with GPU package

Double-precision only

Using more atoms/GPU probably will probably have different behavior

160
150

14
Better 0

[y
w
(@]

120
110
100
90
80
70
60

million atom-steps/s

Lennard-Jones, 2 V100 GPUs, 64K atoms

—Kokkos, 1 MPI rank/GPU

-o—Kokkos, fix nve and comm on CPU

—+-GPU package

1 2 4 8 16
MPI ranks/GPU




2 I Performance comparison with GPU package

Double-precision only
Full Summit node

Using pinned memory may help Kokkos with integrator and comm on host CPU

Lennard-Jones, 6 V100 GPUs, 1M atoms
720

620 | A

Ul

N

o
T

Better

420 r

320

—Kokkos, 1 MPI rank/GPU

million atom-steps/s

N

N

o
T

-eo—Kokkos, fix nve and comm on CPU
120

—+~GPU package

20 1 1 1 1 1
1 2 3 4 5 6 7
MPI ranks/GPU




s 1 ReaxFF

3 versions in LAMMPS:
o USER-REAXC
o KOKKOS
o USER-OMP

KOKKOS CUDA version can run on NVIDIA GPUs

KOKKOS version more memory robust, should be used if getting memory errors,
or with fix GCMC

KOKKOS MPI-only version faster than USER-REAXC package, at least in some
cases

USER-OMP version probably a little better for OpenMP on CPUs (need to
benchmark performance)




“ ! Limitations of the Kokkos package

It a style isn’t in the KOKKOS package, it won’t be accelerated. Also
may need to transfer atom data back and forth between CPU and
GPU every timestep, which reduces performance

USER-INTEL, USER-OMP, and OPT packages can give better

vectorization on Intel hardware leading to better performance

GPU and USER-INTEL packages support single and mixed
precision, KOKKOS package only supports double precision (but
working on fixing this soon)



5 | Conclusions

Computer hardware 1s becoming more complicated, requiring special
code to run well

Kokkos library: goal is performance portability for current and
future hardware

LAMMPS KOKKOS package allows LAMMPS to run on NVIDIA
GPUs and Intel many-core CPUs, and will also support future
supercomputers

Give KOKKOS package a try, post questions or issues to the
LAMMPS mail list



